5:Joining Data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
library(tidyverse)
library(echarts4r) # Install this package before using.
library(hrbrthemes) # Install this package before using. 
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data.
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS…
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoe…
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New…
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.36…
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.66…
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.16…
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.32…
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.48…
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018…
health_cos %>% glimpse()  
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000,…
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000,…
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 364…
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 339…
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000,…
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000,…
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, …
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dr…
  1. Which variables are the same in both data sets
names_drug  <- drug_cos  %>%  names() 
names_health  <- health_cos  %>%  names() 
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with

-For drug_cos select (in this order): ticker, year, grossmargin

-Extract observations for 2018

-Assign output to drug_subset

-For health_cos select (in this order): ticker, year, revenue, gp, industry

-Extract observations for 2018

-Assign output to health_subset

drug_subset  <- drug_cos  %>% 
  select(ticker, year, grossmargin)  %>% 
  filter(year == 2018)

health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset  %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin   revenue        gp industry              
   <chr>  <dbl>       <dbl>     <dbl>     <dbl> <chr>                 
 1 ZTS     2018       0.672   5.82e 9   3.91e 9 Drug Manufacturers - …
 2 PRGO    2018       0.387   4.73e 9   1.83e 9 Drug Manufacturers - …
 3 PFE     2018       0.79    5.36e10   4.24e10 Drug Manufacturers - …
 4 MYL     2018       0.35    1.14e10   4.00e 9 Drug Manufacturers - …
 5 MRK     2018       0.681   4.23e10   2.88e10 Drug Manufacturers - …
 6 LLY     2018       0.738   2.46e10   1.81e10 Drug Manufacturers - …
 7 JNJ     2018       0.668   8.16e10   5.45e10 Drug Manufacturers - …
 8 GILD    2018       0.781   2.21e10   1.73e10 Drug Manufacturers - …
 9 BMY     2018       0.71    2.26e10   1.60e10 Drug Manufacturers - …
10 BIIB    2018       0.865   1.35e10   1.16e10 Drug Manufacturers - …
11 AMGN    2018       0.827   2.37e10   1.96e10 Drug Manufacturers - …
12 AGN     2018       0.861   1.58e10   1.36e10 Drug Manufacturers - …
13 ABBV    2018       0.764   3.28e10   2.50e10 Drug Manufacturers - …

Question: Join_Ticker

-Assign output to the variable drug_cos_subset

drug_cos_subset  <- drug_cos  %>% 
  filter(ticker == "MYL")

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 1 more variable: year <dbl>

-Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos

-Assign the output to combo_df

combo_df<- drug_cos_subset  %>% 
  left_join(health_cos)

combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MYL    Myla… United …        0.245       0.418     0.088 0.161 0.146
2 MYL    Myla… United …        0.244       0.428     0.094 0.163 0.184
3 MYL    Myla… United …        0.228       0.44      0.09  0.153 0.209
4 MYL    Myla… United …        0.242       0.457     0.12  0.169 0.283
5 MYL    Myla… United …        0.243       0.447     0.09  0.133 0.089
6 MYL    Myla… United …        0.19        0.424     0.043 0.052 0.044
7 MYL    Myla… United …        0.272       0.402     0.058 0.121 0.054
8 MYL    Myla… United …        0.258       0.35      0.031 0.074 0.028
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

-Assign the company name to co_name

co_name <- combo_df  %>% 
  distinct(name) %>% 
  pull()

-Assign the company location to co_location

co_location  <- combo_df  %>% 
  distinct(location)  %>% 
  pull() 

-Assign the industry to co_industry group

co_industry  <- combo_df  %>% 
  distinct(industry)  %>% 
  pull() 

The company Mylan NV is located in United Kingdom and is a member of the Drug Manufacturers - Specialty & Generic group.


-Start with combo_df

-Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome

-Assign the output to combo_df_subset

combo_df_subset  <- combo_df  %>% 
  select("year", "grossmargin", "netmargin", 
  "revenue", "gp", "netincome")

-Display combo_df_subset

combo_df_subset
# A tibble: 8 x 6
   year grossmargin netmargin     revenue         gp netincome
  <dbl>       <dbl>     <dbl>       <dbl>      <dbl>     <dbl>
1  2011       0.418     0.088  6129825000 2563364000 536810000
2  2012       0.428     0.094  6796100000 2908300000 640900000
3  2013       0.44      0.09   6909100000 3040300000 623700000
4  2014       0.457     0.12   7719600000 3528000000 929400000
5  2015       0.447     0.09   9429300000 4216100000 847600000
6  2016       0.424     0.043 11076900000 4697000000 480000000
7  2017       0.402     0.058 11907700000 4783100000 696000000
8  2018       0.35      0.031 11433900000 4001600000 352500000

-Create the variable grossmargin_check to compare with the variable grossmargin. They should be equal. -grossmargin_check = gp / revenue

-Create the variable close_enough to check that the absolute value of the difference between grossmargin_check and grossmargin is less than 0.001

combo_df_subset  %>% 
  mutate(grossmargin_check = gp / revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue     gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>  <dbl>     <dbl>
1  2011       0.418     0.088 6.13e 9 2.56e9 536810000
2  2012       0.428     0.094 6.80e 9 2.91e9 640900000
3  2013       0.44      0.09  6.91e 9 3.04e9 623700000
4  2014       0.457     0.12  7.72e 9 3.53e9 929400000
5  2015       0.447     0.09  9.43e 9 4.22e9 847600000
6  2016       0.424     0.043 1.11e10 4.70e9 480000000
7  2017       0.402     0.058 1.19e10 4.78e9 696000000
8  2018       0.35      0.031 1.14e10 4.00e9 352500000
# … with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

-Create the variable netmargin_check to compare with the variable netmargin. They should be equal.

-Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001

combo_df_subset  %>% 
  mutate(netmargin_check = netmargin / revenue,
  close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue     gp netincome netmargin_check
  <dbl>       <dbl>     <dbl>   <dbl>  <dbl>     <dbl>           <dbl>
1  2011       0.418     0.088 6.13e 9 2.56e9 536810000        1.44e-11
2  2012       0.428     0.094 6.80e 9 2.91e9 640900000        1.38e-11
3  2013       0.44      0.09  6.91e 9 3.04e9 623700000        1.30e-11
4  2014       0.457     0.12  7.72e 9 3.53e9 929400000        1.55e-11
5  2015       0.447     0.09  9.43e 9 4.22e9 847600000        9.54e-12
6  2016       0.424     0.043 1.11e10 4.70e9 480000000        3.88e-12
7  2017       0.402     0.058 1.19e10 4.78e9 696000000        4.87e-12
8  2018       0.35      0.031 1.14e10 4.00e9 352500000        2.71e-12
# … with 1 more variable: close_enough <lgl>

Question: Summarize_Industry

-Fill in the blanks

-Put the command you use in the Rchunks in the Rmd file for this quiz

-Use the health_cos data

-For each industry calculate -mean_grossmargin_percent = mean(gp / revenue) * 100 -median_grossmargin_percent = median(gp / revenue) * 100 -min_grossmargin_percent = min(gp / revenue) * 100 -max_grossmargin_percent = max(gp / revenue) * 100

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_grossmargin_percent = mean(gp / revenue) * 100,
            median_grossmargin_percent = median(gp / revenue) * 100,
            min_grossmargin_percent = min(gp / revenue) * 100,
            max_grossmargin_percent = max(gp / revenue) * 100
)
# A tibble: 9 x 5
  industry mean_grossmargi… median_grossmar… min_grossmargin…
* <chr>               <dbl>            <dbl>            <dbl>
1 Biotech…             92.5            92.7             81.7 
2 Diagnos…             50.5            52.7             28.0 
3 Drug Ma…             75.4            76.4             36.8 
4 Drug Ma…             47.9            42.6             34.3 
5 Healthc…             20.5            19.6             10.0 
6 Medical…             55.9            37.4             28.1 
7 Medical…             70.8            72.0             53.2 
8 Medical…             10.4             5.38             2.49
9 Medical…             53.9            52.8             40.5 
# … with 1 more variable: max_grossmargin_percent <dbl>

-mean_grossmargin_percent for the industry Medical Devices is 70.78127%

-median_grossmargin_percent for the industry Medical Devices is 71.982771%

-min_grossmargin_percent for the industry Medical Devices is 53.206895%

-max_grossmargin_percent for the industry Medical Devices is 84.70033%


Question: Inline_Ticker

-Fill in the blanks

-Use the health_cos data

-Extract observations for the ticker ZTS from health_cos and assign to the variable health_cos_subset

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "ZTS")

-Display health_cos_subset

health_cos_subset
# A tibble: 8 x 11
  ticker name  revenue     gp    rnd netincome  assets liabilities
  <chr>  <chr>   <dbl>  <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 ZTS    Zoet…  4.23e9 2.58e9 4.27e8    2.45e8 5.71e 9  1975000000
2 ZTS    Zoet…  4.34e9 2.77e9 4.09e8    4.36e8 6.26e 9  2221000000
3 ZTS    Zoet…  4.56e9 2.89e9 3.99e8    5.04e8 6.56e 9  5596000000
4 ZTS    Zoet…  4.78e9 3.07e9 3.96e8    5.83e8 6.59e 9  5251000000
5 ZTS    Zoet…  4.76e9 3.03e9 3.64e8    3.39e8 7.91e 9  6822000000
6 ZTS    Zoet…  4.89e9 3.22e9 3.76e8    8.21e8 7.65e 9  6150000000
7 ZTS    Zoet…  5.31e9 3.53e9 3.82e8    8.64e8 8.59e 9  6800000000
8 ZTS    Zoet…  5.82e9 3.91e9 4.32e8    1.43e9 1.08e10  8592000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

-In the console, type ?distinct. Go to the help pane to see what distinct does

-In the console, type ?pull. Go to the help pane to see what pull does

-Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Zoetis Inc"

-Assign the output to co_name

co_name <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

-The name of the company with ticker ZTS is Zoetis Inc

-In following chuck

-Assign the company’s industry group to the variable co_industry

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull(industry)

-This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Zoetis Inc is a member of the Drug Manufacturers - Specialty & Generic group.


Steps 7-11

  1. Prepare the data for the plots

-Start with health_cos THEN

-Group_by industry THEN

-Calculate the median research and development expenditure as a percent of revenue by industry

-Assign the output to df

df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue))   
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Dru…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879,…
  1. Create a static bar chart

-Use ggplot to initialize the chart

-Data is df

-The variable industry is mapped to the x-axis

-Reorder it based the value of med_rnd_rev

-The variable med_rnd_rev is mapped to the y-axis

-Add a bar chart using geom_col

-Use scale_y_continuous to label the y-axis with percent

-Use coord_flip() to flip the coordinates

-Use labs to add title, subtitle and remove x and y-axes

-Use theme_ipsum() from the hrbrthemes package to improve the theme

ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_ipsum()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2021-03-15-5joining-data"))
  1. Create an interactive bar chart using the package echarts4r

-Start with the data df

-Use arrange to reorder med_rnd_rev

-Use e_charts to initialize a chart

-The variable industry is mapped to the x-axis

-Add a bar chart using e_bar with the values of med_rnd_rev

-Use e_flip_coords() to flip the coordinates

-Use e_title to add the title and the subtitle

-Use e_legend to remove the legends

-Use e_x_axis to change format of labels on x-axis to percent

-Use e_y_axis to remove labels on y-axis-

-Use e_theme to change the theme. Find more themes here

df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("purple-passion")