3:Reading and Writing Data

Practice reading and writing data, more dplyr and a plot.

  1. Load the R packages that we will use.
  1. Download \(C0_2\) emissions per capita from Our World In Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file.

Read the data into R and assign it to emissions.

file_cvs <- here("_posts", "2021-02-22-reading-and-writing-data", "co-emissions-per-capita.csv")

emissions <- read_csv(file_cvs)
  1. Show the first 10 rows (observations of) emissions.
emissions
# A tibble: 22,383 x 4
   Entity      Code   Year `Per capita CO2 emissions`
   <chr>       <chr> <dbl>                      <dbl>
 1 Afghanistan AFG    1949                    0.00191
 2 Afghanistan AFG    1950                    0.0109 
 3 Afghanistan AFG    1951                    0.0117 
 4 Afghanistan AFG    1952                    0.0115 
 5 Afghanistan AFG    1953                    0.0132 
 6 Afghanistan AFG    1954                    0.0130 
 7 Afghanistan AFG    1955                    0.0186 
 8 Afghanistan AFG    1956                    0.0218 
 9 Afghanistan AFG    1957                    0.0343 
10 Afghanistan AFG    1958                    0.0380 
# … with 22,373 more rows
  1. Start with emissions data THEN

-Use clean_names from the janitor package to make the names easier to work with.

-Assign the output to tidy_emissions.

-Show the first 10 rows of tidy_emissions.

tidy_emissions <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 22,383 x 4
   entity      code   year per_capita_co2_emissions
   <chr>       <chr> <dbl>                    <dbl>
 1 Afghanistan AFG    1949                  0.00191
 2 Afghanistan AFG    1950                  0.0109 
 3 Afghanistan AFG    1951                  0.0117 
 4 Afghanistan AFG    1952                  0.0115 
 5 Afghanistan AFG    1953                  0.0132 
 6 Afghanistan AFG    1954                  0.0130 
 7 Afghanistan AFG    1955                  0.0186 
 8 Afghanistan AFG    1956                  0.0218 
 9 Afghanistan AFG    1957                  0.0343 
10 Afghanistan AFG    1958                  0.0380 
# … with 22,373 more rows
  1. Start with the tidy_emissions THEN

-Use filter to extract rows with year == 1997 THEN

-Use skim to calculate the descriptive statistics.

tidy_emissions %>% 
  filter(year == 1997) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 219
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 219 0
code 12 0.95 3 8 0 207 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1997.00 0.00 1997.00 1997.00 1997.0 1997.00 1997.00 ▁▁▇▁▁
per_capita_co2_emissions 0 1 4.91 6.95 0.04 0.65 2.9 7.06 69.89 ▇▁▁▁▁
  1. 12 observations have a missing code. How are these observations different?

-Start with tidy_emissions then extract rows with year == 1997 and are missing a code.

tidy_emissions %>% 
  filter(year == 1997, is.na(code))
# A tibble: 12 x 4
   entity                     code   year per_capita_co2_emissions
   <chr>                      <chr> <dbl>                    <dbl>
 1 Africa                     <NA>   1997                     1.09
 2 Asia                       <NA>   1997                     2.39
 3 Asia (excl. China & India) <NA>   1997                     3.23
 4 EU-27                      <NA>   1997                     8.62
 5 EU-28                      <NA>   1997                     8.74
 6 Europe                     <NA>   1997                     8.62
 7 Europe (excl. EU-27)       <NA>   1997                     8.59
 8 Europe (excl. EU-28)       <NA>   1997                     8.34
 9 North America              <NA>   1997                    14.4 
10 North America (excl. USA)  <NA>   1997                     5.16
11 Oceania                    <NA>   1997                    12.0 
12 South America              <NA>   1997                     2.28

Entities that are not countries do not have country codes.

  1. Start with tidy_emissions THEN

-Use select to drop the year variable THEN

-Use rename to change the variable entity to country

-Assign the output to emissions_1997

emissions_1997 <- tidy_emissions %>% 
  filter(year == 1997, !is.na(code)) %>% 
  select(-year) %>% 
  rename(country = entity)
  1. Which 15 countries have the highest per_capita_co2_emissions?

-Start with emissions_1997 THEN

-Use slice_max to extract the 15 rows with the per_capita_co2_emissions

-Assign the output to max_15_emitters

max_15_emitters <- emissions_1997 %>% 
  slice_max(per_capita_co2_emissions, n = 15)
  1. Which 15 countries have the lowest per_capita_co2_emissions?

-Start with emissions_1997 THEN

-Use slice_min to extract the 15 rows with the lowest values

-Assign the output to min_15_emitters

min_15_emitters <- emissions_1997 %>% 
  slice_min(per_capita_co2_emissions, n = 15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters

-Assign the output to max_min_15

max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab-separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Read the 3 files formats into R
max_min_15_csv <-  read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <-  read_tsv("max_min_15.tsv") # tab-separated
max_min_15_psv <-  read_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsv, max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
#   per_capita_co2_emissions <dbl>

Are there any differences? Answer: No

  1. Reorder country in max_min_15 for plotting and assign to `max_min_15_plot_data

-Start with emissions_1997 THEN

-Use mutate to reorder country according to per_capitol_co2_emissions

max_min_15_plot_data <- max_min_15 %>% 
  mutate(country = reorder(country, per_capita_co2_emissions))
  1. Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data, mapping = aes(x = per_capita_co2_emissions, y = country)) + geom_col() + labs(title = "The top 15 and bottom 15 per capita CO2 emissions", subtitle = "for 1997", x = NULL, y = NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png", path = here("_posts", "2021-02-22-reading-and-writing-data"))
  1. Add preview.png to yaml at the top of this file

preview: preview.png