Practice reading and writing data, more dplyr and a plot.
Download \(C0_2\) emissions per capita from Our World In Data into the directory for this post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file.
Read the data into R and assign it to emissions
.
file_cvs <- here("_posts", "2021-02-22-reading-and-writing-data", "co-emissions-per-capita.csv")
emissions <- read_csv(file_cvs)
emissions
.emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
emissions
data THEN-Use clean_names
from the janitor package to make the names easier to work with.
-Assign the output to tidy_emissions
.
-Show the first 10 rows of tidy_emissions
.
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
tidy_emissions
THEN-Use filter
to extract rows with year == 1997
THEN
-Use skim
to calculate the descriptive statistics.
Name | Piped data |
Number of rows | 219 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 219 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 207 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1997.00 | 0.00 | 1997.00 | 1997.00 | 1997.0 | 1997.00 | 1997.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 4.91 | 6.95 | 0.04 | 0.65 | 2.9 | 7.06 | 69.89 | ▇▁▁▁▁ |
-Start with tidy_emissions
then extract rows with year == 1997
and are missing a code.
# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1997 1.09
2 Asia <NA> 1997 2.39
3 Asia (excl. China & India) <NA> 1997 3.23
4 EU-27 <NA> 1997 8.62
5 EU-28 <NA> 1997 8.74
6 Europe <NA> 1997 8.62
7 Europe (excl. EU-27) <NA> 1997 8.59
8 Europe (excl. EU-28) <NA> 1997 8.34
9 North America <NA> 1997 14.4
10 North America (excl. USA) <NA> 1997 5.16
11 Oceania <NA> 1997 12.0
12 South America <NA> 1997 2.28
Entities that are not countries do not have country codes.
filter
to extract rows with year == 1997 and without missing codes THEN-Use select
to drop the year
variable THEN
-Use rename
to change the variable entity
to country
-Assign the output to emissions_1997
per_capita_co2_emissions
?-Start with emissions_1997
THEN
-Use slice_max
to extract the 15 rows with the per_capita_co2_emissions
-Assign the output to max_15_emitters
max_15_emitters <- emissions_1997 %>%
slice_max(per_capita_co2_emissions, n = 15)
per_capita_co2_emissions
?-Start with emissions_1997
THEN
-Use slice_min
to extract the 15 rows with the lowest values
-Assign the output to min_15_emitters
min_15_emitters <- emissions_1997 %>%
slice_min(per_capita_co2_emissions, n = 15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
-Assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 file formatsmax_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab-separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab-separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
, max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences? Answer: No
country
in max_min_15
for plotting and assign to `max_min_15_plot_data-Start with emissions_1997
THEN
-Use mutate
to reorder country
according to per_capitol_co2_emissions
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data = max_min_15_plot_data, mapping = aes(x = per_capita_co2_emissions, y = country)) + geom_col() + labs(title = "The top 15 and bottom 15 per capita CO2 emissions", subtitle = "for 1997", x = NULL, y = NULL)
ggsave(filename = "preview.png", path = here("_posts", "2021-02-22-reading-and-writing-data"))
preview: preview.png