Comparison of R and Excel.
Load packages we will need using the library command.
Read corporate tax spreadsheet into R dataframe.
url <- "https://estanny.com/static/week2/corp_tax.xlsx"
destfile <- "corp_tax.xlsx"
curl::curl_download(url, destfile)
corp_tax <- read_excel(destfile)
Use the function skim from skimer to calculate descriptive statistics.
skim(corp_tax)
Name | corp_tax |
Number of rows | 379 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 3 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
company | 0 | 1 | 2 | 38 | 0 | 379 | 0 |
industry | 0 | 1 | 9 | 39 | 0 | 22 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
profit | 0 | 1 | 2020.28 | 3764.71 | 6.80 | 348.56 | 850.30 | 2045.55 | 31414.00 | ▇▁▁▁▁ |
tax | 0 | 1 | 229.14 | 554.96 | -647.00 | 0.90 | 44.45 | 214.95 | 4718.00 | ▇▁▁▁▁ |
tax_rate | 0 | 1 | 0.07 | 0.21 | -1.68 | 0.00 | 0.10 | 0.18 | 0.61 | ▁▁▁▇▅ |